Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163419

RESUMO

The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in absence of synaptic structures. This review describes the cooperative actions of three calcium sources on somatic exocytosis. Emphasis is given to the somatic release of serotonin by the classical leech Retzius neuron, which has allowed detailed studies on the fine steps from excitation to exocytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. For action potential frequencies above 5 Hz, summation of calcium transients on individual action potentials activates the second calcium source: ryanodine receptors produce calcium-induced calcium release. The resulting calcium tsunami activates mitochondrial ATP synthesis to fuel transport of vesicles to the plasma membrane. Serotonin that is released maintains a large-scale exocytosis by activating the third calcium source: serotonin autoreceptors coupled to phospholipase C promote IP3 production. Activated IP3 receptors in peripheral endoplasmic reticulum release calcium that promotes vesicle fusion. The Swiss-clock workings of the machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum near the plasma membrane hinders the vesicle transport, drastically reducing the thermodynamic efficiency of the ATP expenses and elevating the energy cost of release.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Neurônios/metabolismo , Serotonina/metabolismo , Potenciais de Ação , Animais , Exocitose , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Termodinâmica
2.
Front Mol Neurosci ; 14: 638858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994942

RESUMO

Streams of action potentials or long depolarizations evoke a massive exocytosis of transmitters and peptides from the surface of dendrites, axons and cell bodies of different neuron types. Such mode of exocytosis is known as extrasynaptic for occurring without utilization of synaptic structures. Most transmitters and all peptides can be released extrasynaptically. Neurons may discharge their contents with relative independence from the axon, soma and dendrites. Extrasynaptic exocytosis takes fractions of a second in varicosities or minutes in the soma or dendrites, but its effects last from seconds to hours. Unlike synaptic exocytosis, which is well localized, extrasynaptic exocytosis is diffuse and affects neuronal circuits, glia and blood vessels. Molecules that are liberated may reach extrasynaptic receptors microns away. The coupling between excitation and exocytosis follows a multistep mechanism, different from that at synapses, but similar to that for the release of hormones. The steps from excitation to exocytosis have been studied step by step for the vital transmitter serotonin in leech Retzius neurons. The events leading to serotonin exocytosis occur similarly for the release of other transmitters and peptides in central and peripheral neurons. Extrasynaptic exocytosis occurs commonly onto glial cells, which react by releasing the same or other transmitters. In the last section, we discuss how illumination of the retina evokes extrasynaptic release of dopamine and ATP. Dopamine contributes to light-adaptation; ATP activates glia, which mediates an increase in blood flow and oxygenation. A proper understanding of the workings of the nervous system requires the understanding of extrasynaptic communication.

3.
BMC Genomics ; 22(1): 215, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33765928

RESUMO

BACKGROUND: While leeches in the genus Hirudo have long been models for neurobiology, the molecular underpinnings of nervous system structure and function in this group remain largely unknown. To begin to bridge this gap, we performed RNASeq on pools of identified neurons of the central nervous system (CNS): sensory T (touch), P (pressure) and N (nociception) neurons; neurosecretory Retzius cells; and ganglia from which these four cell types had been removed. RESULTS: Bioinformatic analyses identified 3565 putative genes whose expression differed significantly among the samples. These genes clustered into 9 groups which could be associated with one or more of the identified cell types. We verified predicted expression patterns through in situ hybridization on whole CNS ganglia, and found that orthologous genes were for the most part similarly expressed in a divergent leech genus, suggesting evolutionarily conserved roles for these genes. Transcriptional profiling allowed us to identify candidate phenotype-defining genes from expanded gene families. Thus, we identified one of eight hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as a candidate for mediating the prominent sag current in P neurons, and found that one of five inositol triphosphate receptors (IP3Rs), representing a sub-family of IP3Rs absent from vertebrate genomes, is expressed with high specificity in T cells. We also identified one of two piezo genes, two of ~ 65 deg/enac genes, and one of at least 16 transient receptor potential (trp) genes as prime candidates for involvement in sensory transduction in the three distinct classes of leech mechanosensory neurons. CONCLUSIONS: Our study defines distinct transcriptional profiles for four different neuronal types within the leech CNS, in addition to providing a second ganglionic transcriptome for the species. From these data we identified five gene families that may facilitate the sensory capabilities of these neurons, thus laying the basis for future work leveraging the strengths of the leech system to investigate the molecular processes underlying and linking mechanosensation, cell type specification, and behavior.


Assuntos
Sanguessugas , Animais , Sistema Nervoso Central , Hibridização In Situ , Sanguessugas/genética , Neurônios
4.
Front Synaptic Neurosci ; 13: 785361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35242023

RESUMO

Neuromuscular transmission, from spontaneous release to facilitation and depression, was accurately reproduced by a mechanistic kinetic model of sequential maturation transitions in the molecular fusion complex. The model incorporates three predictions. First, calcium-dependent forward transitions take vesicles from docked to preprimed to primed states, followed by fusion. Second, prepriming and priming are reversible. Third, fusion and recycling are unidirectional. The model was fed with experimental data from previous studies, whereas the backward (ß) and recycling (ρ) rate constant values were fitted. Classical experiments were successfully reproduced with four transition states in the model when every forward (α) rate constant had the same value, and both backward rate constants were 50-100 times larger. Such disproportion originated an abruptly decreasing gradient of resting vesicles from docked to primed states. By contrast, a three-state version of the model failed to reproduce the dynamics of transmission by using the same set of parameters. Simulations predict the following: (1) Spontaneous release reflects primed to fusion spontaneous transitions. (2) Calcium elevations synchronize the series of forward transitions that lead to fusion. (3) Facilitation reflects a transient increase of priming following the calcium-dependent maturation transitions. (4) The calcium sensors that produce facilitation are those that evoke the transitions form docked to primed states. (5) Backward transitions and recycling restore the resting state. (6) Depression reflects backward transitions and slow recycling after intense release. Altogether, our results predict that fusion is produced by one calcium sensor, whereas the modulation of the number of vesicles that fuse depends on the calcium sensors that promote the early transition states. Such finely tuned kinetics offers a mechanism for collective non-linear transitional adaptations of a homogeneous vesicle pool to the ever-changing pattern of electrical activity in the neuromuscular junction.

5.
Evol Dev ; 22(6): 471-493, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33226195

RESUMO

In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging. Next, we discuss the pros and cons of the two leech model species, Hirudo, a classic model for invertebrate neurobiology, and Helobdella, an emerging model for clitellate developmental biology, as models for behavioral EvoDevo research. Given the limitations of each leech system, neither is particularly strong for behavioral EvoDevo. However, the two leech systems are complementary in their technical accessibilities, and they do exhibit some behavioral similarities and differences. By studying them in parallel and together with additional leech species such as Haementeria, it is possible to explore the different levels of behavioral development and evolution.


Assuntos
Comportamento Animal , Evolução Biológica , Sanguessugas/embriologia , Sanguessugas/fisiologia , Animais , Sanguessugas/crescimento & desenvolvimento , Modelos Animais , Especificidade da Espécie
6.
Biomed Opt Express ; 11(3): 1432-1448, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206420

RESUMO

The vital molecule serotonin modulates the functioning of the nervous system. The chemical characteristics of serotonin provide multiple advantages for its study in living or fixed tissue. Serotonin has the capacity to emit fluorescence directly and indirectly through chemical intermediates in response to mono- and multiphoton excitation. However, the fluorescent emissions are multifactorial and their dependence on the concentration, excitation wavelength and laser intensity still need a comprehensive study. Here we studied the fluorescence of serotonin excited multiphotonically with near-infrared light. Experiments were conducted in a custom-made multiphoton microscope coupled to a monochromator and a photomultiplier that collected the emissions. We show that the responses of serotonin to multiphoton stimulation are highly non-linear. The well-known violet emission having a 340 nm peak was accompanied by two other emissions in the visible spectrum. The best excitor wavelength to produce both emissions was 700 nm. A green emission with a ∼ 500 nm peak was similar to a previously described fluorescence in response to longer excitation wavelengths. A new blue emission with a ∼ 405 nm peak was originated from the photoconversion of serotonin to a relatively stable product. Such a reaction could be reproduced by irradiation of serotonin with high laser power for 30 minutes. The absorbance of the new compound expanded from ∼ 315 to ∼ 360 nm. Excitation of the irradiated solution monophotonically with 350 nm or biphotonically with 700 nm similarly generated the 405 nm blue emission. Our data are presented quantitatively through the design of a single geometric chart that combines the intensity of each emission in response to the serotonin concentration, excitation wavelengths and laser intensity. The autofluorescence of serotonin in addition to the formation of the two compounds emitting in the visible spectrum provides diverse possibilities for the quantitative study of the dynamics of serotonin in living tissue.

7.
Front Physiol ; 10: 473, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214038

RESUMO

Through somatic exocytosis neurons liberate immense amounts of transmitter molecules that modulate the functioning of the nervous system. A stream of action potentials triggers an ATP-dependent transport of transmitter-containing vesicles to the plasma membrane, that ends with a large-scale exocytosis. It is commonly assumed that biological processes use metabolic energy with a high thermodynamic efficiency, meaning that most energy generates work with minor dissipation. However, the intricate ultrastructure underlying the pathway for the vesicle flow necessary for somatic exocytosis challenges this possibility. To study this problem here we first applied thermodynamic theory to quantify the efficiency of somatic exocytosis of the vital transmitter serotonin. Then we correlated the efficiency to the ultrastructure of the transport pathway of the vesicles. Exocytosis was evoked in cultured Retzius neurons of the leech by trains of 10 impulses delivered at 20 Hz. The kinetics of exocytosis was quantified from the gradual fluorescence increase of FM1-43 dye as it became incorporated into vesicles that underwent their exo-endocytosis cycle. By fitting a model of the vesicle transport carried by motor forces to the kinetics of exocytosis, we calculated the thermodynamic efficiency of the ATP expenses per vesicle, as the power of the transport divided by total energy ideally produced by the hydrolysis of ATP during the process. The efficiency was remarkably low (0.1-6.4%) and the values formed a W-shape distribution with the transport distances of the vesicles. Electron micrographs and fluorescent staining of the actin cortex indicated that the slopes of the W chart could be explained by the interaction of vesicles with the actin cortex and the calcium-releasing endoplasmic reticulum. We showed that the application of thermodynamic theory permitted to predict aspects of the intracellular structure. Our results suggest that the distribution of subcellular structures that are essential for somatic exocytosis abates the thermodynamic efficiency of the transport by hampering vesicle mobilization. It is remarkable that the modulation of the nervous system occurs at the expenses of an efficient use of metabolic energy.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29937726

RESUMO

This review article deals with the mechanisms of extrasynaptic release of transmitter substances, namely the release from the soma, axon and dendrites in the absence of postsynaptic counterparts. Extrasynaptic release occurs by exocytosis or diffusion. Spillover from the synaptic cleft also contributes to extrasynaptic neurotransmission. Here, we first describe two well-known examples of exocytosis from the neuronal soma, which may release copious amounts of transmitter for up to hundreds of seconds after electrical stimulation. The mechanisms for somatic exocytosis of the low molecular weight transmitter serotonin, and the peptides oxytocin and vasopressin have been studied in detail. Serotonin release from leech neurons and oxytocin and vasopressin from rodent neurons have a common multi-step mechanism, which is completely different from that for exocytosis from presynaptic endings. Most transmitters and peptides released extrasynaptically seem to follow this same mechanism. Extrasynaptic exocytosis may occur onto glial cells, which act as intermediaries for long-term and long-distance transmission. The second part of this review article focuses on the release upon synthesis of the representative diffusible molecules nitric oxide (NO) and endocannabinoids. Diffusible molecules are synthesized "on demand" from postsynaptic terminals in response to electrical activity and intracellular calcium elevations. Their effects include the retrograde modulation of presynaptic electrical activity and transmitter release. Extrasynaptic neurotransmission is well exemplified in the retina. Light-evoked extrasynaptic communication sets the gain for visual responses and integrates the activity of neurons, glia and blood vessels. Understanding how extrasynaptic communication changes the function of hard-wired circuits has become fundamental to understand the function of the nervous system.

9.
Front Cell Neurosci ; 11: 399, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255405

RESUMO

[This corrects the article on p. 198 in vol. 10, PMID: 27587998.].

10.
Artigo em Inglês | MEDLINE | ID: mdl-27593450

RESUMO

The biogenic amine octopamine (OA) modulates invertebrate behavior by changing neuronal responses from sensory inputs to motor outputs. However, the OA modulation of visual sensitivity and its possible coupling to diurnal cycles remains unexplored. Here we studied the diurnal variations in the OA levels in the hemolymph of the crayfish Procambarus clarkii, its release from the structures in the eyestalk and its modulation of the retinal light sensitivity. The hemolymph concentration of OA and its amino acid precursor tyrosine was measured by high-resolution liquid chromatography; OA varied along the 24-hcycle. The peak value appeared about 2h before the light offset which preceded the peak locomotor activity. OA was found in every structure of the eyestalk but displayed higher levels in the retina-lamina ganglionaris. Moreover, OA was released from isolated eyestalks at a rate of 92nmol/eyestalk/min and a calcium-dependent release was evoked by incubation in a high potassium solution. OA injected into dark-adapted crayfish or applied to the isolated retina at concentrations of 1, 10 and 100µM produced a proportionally increasing reduction in the amplitude of the photoreceptor light responses. These OA concentrations did not affect the position of the visual accessory pigments. Our results suggest that OA release in the crayfish eyestalk is coupled to the 24-hcycle to regulate the diurnal reduction of the photoreceptor sensitivity and to favor the expression of exploratory locomotion during the dark phase of the circadian cycle.


Assuntos
Astacoidea/metabolismo , Octopamina/metabolismo , Retina/fisiologia , Animais , Cromatografia Líquida
11.
Front Cell Neurosci ; 10: 198, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27587998

RESUMO

We studied how a neuronal circuit composed of two neuron types connected by chemical and electrical synapses maintains constant its integrative capacities as neurons grow. For this we combined electrophysiological experiments with mathematical modeling in pairs of electrically-coupled Retzius neurons from postnatal to adult leeches. The electrically-coupled dendrites of both Retzius neurons receive a common chemical input, which produces excitatory postsynaptic potentials (EPSPs) with varying amplitudes. Each EPSP spreads to the soma, but also crosses the electrical synapse to arrive at the soma of the coupled neuron. The leak of synaptic current across the electrical synapse reduces the amplitude of the EPSPs in proportion to the coupling ratio. In addition, summation of EPSPs generated in both neurons generates the baseline action potentials of these serotonergic neurons. To study how integration is adjusted as neurons grow, we first studied the characteristics of the chemical and electrical connections onto the coupled dendrites of neuron pairs with soma diameters ranging from 21 to 75 µm. Then by feeding a mathematical model with the neuronal voltage responses to pseudorandom noise currents we obtained the values of the coupling ratio, the membrane resistance of the soma (rm ) and dendrites (r dend), the space constant (λ) and the characteristic dendritic length (L = l/λ). We found that the EPSPs recorded from the somata were similar regardless on the neuron size. However, the amplitude of the EPSPs and the firing frequency of the neurons were inversely proportional to the coupling ratio of the neuron pair, which also was independent from the neuronal size. This data indicated that the integrative constancy relied on the passive membrane properties. We show that the growth of Retzius neurons was compensated by increasing the membrane resistance of the dendrites and therefore the λ value. By solely increasing the dendrite resistance this circuit maintains constant its integrative capacities as its neurons grow.

12.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26009760

RESUMO

Papers in this issue concern extrasynaptic transmission, namely release of signalling molecules by exocytosis or diffusion from neuronal cell bodies, dendrites, axons and glia. Problems discussed concern the molecules, their secretion and importance for normal function and disease. Molecules secreted extrasynaptically include transmitters, peptides, hormones and nitric oxide. For extrasynaptic secretion, trains of action potentials are required, and the time course of release is slower than at synapses. Questions arise concerning the mechanism of extrasynaptic secretion: how does it differ from the release observed at synaptic terminals and gland cells? What kinds of vesicles take part? Is release accomplished through calcium entry, SNAP and SNARE proteins? A clear difference is in the role of molecules released synaptically and extrasynaptically. After extrasynaptic release, molecules reach distant as well as nearby cells, and thereby produce long-lasting changes over large volumes of brain. Such changes can affect circuits for motor performance and mood states. An example with clinical relevance is dyskinesia of patients treated with l-DOPA for Parkinson's disease. Extrasynaptically released transmitters also evoke responses in glial cells, which in turn release molecules that cause local vasodilatation and enhanced circulation in regions of the brain that are active.


Assuntos
Corpo Celular/metabolismo , Dendritos/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Neurônios/citologia
13.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26009775

RESUMO

Serotonin, a modulator of multiple functions in the nervous system, is released predominantly extrasynaptically from neuronal cell bodies, axons and dendrites. This paper describes how serotonin is released from cell bodies of Retzius neurons in the central nervous system (CNS) of the leech, and how it affects neighbouring glia and neurons. The large Retzius neurons contain serotonin packed in electrodense vesicles. Electrical stimulation with 10 impulses at 1 Hz fails to evoke exocytosis from the cell body, but the same number of impulses at 20 Hz promotes exocytosis via a multistep process. Calcium entry into the neuron triggers calcium-induced calcium release, which activates the transport of vesicle clusters to the plasma membrane. Exocytosis occurs there for several minutes. Serotonin that has been released activates autoreceptors that induce an inositol trisphosphate-dependent calcium increase, which produces further exocytosis. This positive feedback loop subsides when the last vesicles in the cluster fuse and calcium returns to basal levels. Serotonin released from the cell body is taken up by glia and released elsewhere in the CNS. Synchronous bursts of neuronal electrical activity appear minutes later and continue for hours. In this way, a brief train of impulses is translated into a long-term modulation in the nervous system.


Assuntos
Corpo Celular/metabolismo , Sistema Nervoso Central/fisiologia , Exocitose/fisiologia , Sanguessugas/fisiologia , Modelos Neurológicos , Neurônios/metabolismo , Serotonina/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Cálcio/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Estimulação Elétrica , Retroalimentação Fisiológica/fisiologia , Vesículas Transportadoras/metabolismo
14.
Front Cell Neurosci ; 8: 169, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018697

RESUMO

The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca(2+) entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca(2+) transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca(2+) entry through L-type channels activated Ca(2+)-induced Ca(2+) release. A resulting fast Ca(2+) transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca(2+) transient also triggered the transport of distant clusters of vesicles toward the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca(2+) increase in the submembrane shell. This localized Ca(2+) increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca(2+) and this Ca(2+) evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine neurotransmission.

15.
PLoS One ; 7(10): e45454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056204

RESUMO

Transmitter exocytosis from the neuronal soma is evoked by brief trains of high frequency electrical activity and continues for several minutes. Here we studied how active vesicle transport towards the plasma membrane contributes to this slow phenomenon in serotonergic leech Retzius neurons, by combining electron microscopy, the kinetics of exocytosis obtained from FM1-43 dye fluorescence as vesicles fuse with the plasma membrane, and a diffusion equation incorporating the forces of local confinement and molecular motors. Electron micrographs of neurons at rest or after stimulation with 1 Hz trains showed cytoplasmic clusters of dense core vesicles at 1.5±0.2 and 3.7±0.3 µm distances from the plasma membrane, to which they were bound through microtubule bundles. By contrast, after 20 Hz stimulation vesicle clusters were apposed to the plasma membrane, suggesting that transport was induced by electrical stimulation. Consistently, 20 Hz stimulation of cultured neurons induced spotted FM1-43 fluorescence increases with one or two slow sigmoidal kinetics, suggesting exocytosis from an equal number of vesicle clusters. These fluorescence increases were prevented by colchicine, which suggested microtubule-dependent vesicle transport. Model fitting to the fluorescence kinetics predicted that 52-951 vesicles/cluster were transported along 0.60-6.18 µm distances at average 11-95 nms(-1) velocities. The ATP cost per vesicle fused (0.4-72.0), calculated from the ratio of the ΔG(process)/ΔG(ATP), depended on the ratio of the traveling velocity and the number of vesicles in the cluster. Interestingly, the distance-dependence of the ATP cost per vesicle was bistable, with low energy values at 1.4 and 3.3 µm, similar to the average resting distances of the vesicle clusters, and a high energy barrier at 1.6-2.0 µm. Our study confirms that active vesicle transport is an intermediate step for somatic serotonin exocytosis by Retzius neurons and provides a quantitative method for analyzing similar phenomena in other cell types.


Assuntos
Exocitose , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Vesículas Sinápticas/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Transporte Biológico Ativo , Fenômenos Biofísicos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Estimulação Elétrica , Corantes Fluorescentes/metabolismo , Cinética , Sanguessugas , Microscopia Eletrônica , Microscopia de Fluorescência , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Neurônios Serotoninérgicos/ultraestrutura , Vesículas Sinápticas/ultraestrutura
16.
Front Physiol ; 3: 319, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969726

RESUMO

We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities. Extrasynaptic exocytosis may be the major source of signaling molecules producing volume transmission and by doing so may be part of a long duration signaling mode in the nervous system.

17.
Front Physiol ; 3: 175, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685436

RESUMO

We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear region.

18.
PLoS One ; 7(3): e33333, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438915

RESUMO

The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense networks of macromolecules, called active zone material, (AZM) are attached to the presynaptic membrane next to docked vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to 10-15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles' distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number, arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis for testing and extending concepts of docking mechanisms provided by biochemistry.


Assuntos
Vesículas Sinápticas/fisiologia , Animais , Sítios de Ligação , Simulação por Computador , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Substâncias Macromoleculares/metabolismo , Modelos Neurológicos , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Rana pipiens , Membranas Sinápticas/fisiologia , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
20.
Dev Neurobiol ; 71(10): 870-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21913334

RESUMO

We developed NeuronGrowth, a software for the automatic quantification of extension and retraction of neurites and filopodia, from time-lapse sequences of two-dimensional digital micrographs. NeuronGrowth requires a semiautomatic characterization of individual neurites in a reference frame, which is then used for automatic tracking and measurement of every neurite over the whole image sequence. Modules for sequence alignment, background subtraction, flat field correction, light normalization, and cropping have been integrated to improve the quality of the analysis. Moreover, NeuronGrowth incorporates a deconvolution filter that corrects the shadow-cast effect of differential interference contrast (DIC) images. NeuronGrowth was tested by analyzing the formation of outgrowth patterns by individual leech neurons cultured under two different conditions. Phase contrast images were obtained from neurons plated on CNS homogenates and DIC images were obtained from similar neurons plated on ganglion capsules as substrates. Filopodia were measured from fluorescent growth-cones of chick dorsal root ganglion cells. Quantitative data of neurite extension and retraction obtained by three different users applying NeuronGrowth and two other manually operated software packages were similar. However, NeuronGrowth required less user participation and had a better time performance when compared with the other software packages. NeuronGrowth may be used in general to quantify the dynamics of tubular structures such as blood vessels. NeuronGrowth is a free plug-in for the free software ImageJ and can be downloaded along with a user manual, a troubleshooting section and other information required for its use from http://www.ifc.unam.mx or http://www.ifc.unam.mx/ffm/index.html.


Assuntos
Sistema Nervoso Central/citologia , Neuritos/fisiologia , Neurônios/citologia , Dinâmica não Linear , Pseudópodes/fisiologia , Software , Animais , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Sanguessugas , Microscopia , Neurônios/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...